MATH 497 - Additional Questions for Homework on Section 3.3.

Suppose that S_{1}, S_{2}, and S_{3} are risky securities with the following information

Security	Expected Return $\left(\mu_{j}\right)$	Risk $\left(\sigma_{j}\right)$
S_{1}	0.05	0.03
S_{2}	0.10	0.12
S_{3}	0.08	0.06

Security Pair	Correlation Coeff. $\left(\rho_{i j}\right)$
$S_{1}-S_{2}$	-0.2
$S_{1}-S_{3}$	0.5
$S_{2}-S_{3}$	0.2

A. Calculate the expected return and risk for the following portfolios
(i) the portfolio consisting of of 70% of S_{1} and 30% of S_{2} by weight
(ii) the portfolio evenly divided between S_{1}, S_{2}, and S_{3} by weight
(iii) the portfolio with weightings 150% security $S_{1}, 50 \%$ security S_{2} and -100% security S_{3}
B. Calculate the weights of the minimum variance portfolio for this set of securities. Calculate the expected return and risk of the minimum variance portfolio. [Note: You may wish to use Mathematica to calculate the various matrix inverses.]
C. Calculate the weights and risk of the portfolio on the minimum variance line that have expected return
(i) $\mu=0.02$
(ii) $\mu=0.04$
(iii) $\mu=0.06$
(iv) $\mu=0.08$
(v) $\mu=0.10$
D. Suppose that one has access to a risk-free return of 2%.
(i) Calculate the Sharpe ratio of each security S_{1}, S_{2}, and S_{3}.
(ii) Calculate the Sharpe ratio of each portfolio in problem A .
(iii) Calculate the weights of the market portfolio for this set of securities. Calculate the expected return and risk of the market portfolio. [Note: You may wish to use Mathematica to calculate the various matrix inverses.]
E. Plot the risk-return profile (on a $\sigma \mu$ plane) of each of the securities S_{1}, S_{2}, and S_{3}, the portfolios in problem B and C, and the market portfolio. Sketch the graph of the minimum variance line.

