MATH 360 - Additional Questions for Homework on Section 1.6.
A. Let $A(t)$ denote the value of a risk-free bond at time t (in years) and let $S(t)$ denote the random variable corresponding to the value of a stock at time t (in years). Suppose that $A(0)=20$ and $A(2)=$ 20.50. Suppose that $S(0)=15$ and $S(2)=\left\{\begin{array}{l}18.50 \quad \text { if stock is up (probability 0.7) } \\ 13.50 \quad \text { if stock is down (probability 0.3) }\end{array}\right.$.

Let $C(t)$ denote the value at time t of a European call option for one share of stock with exercise time 2 and strike price 16. Let $P(t)$ denote the value of time t of a European put option for one share of stock with exercise time 2 and strike price 15.50 . Suppose that $C(0)=0.9146$ and $P(0)=1.2195$.
(i) Considering the final time to be $t=2$, find the expected return and the standard deviation of the return for both the stock and the risk-free bond.
(ii) Find $C(2), P(2), E(C(2))$, and $E(P(2))$.
(iii) Considering the final time to be $t=2$, find $K_{C}, K_{P}, E\left(K_{C}\right), E\left(K_{P}\right), \sigma_{C}$, and σ_{P}.
(iv) Consider the portfolio V composed of 10 shares of stock and 8 put contracts (of the type described above). Calculate the expected return and standard deviation of the return for this portfolio over the time interval $[0,2]$.
(v) Consider the portfolio V composed of 10 shares of stock but is short 8 put contracts (of the type described above). Calculate the expected return and standard deviation of the return for this portfolio over the time interval $[0,2]$.
(vi) Consider the portfolio V composed of 20 shares of stock, 10 bonds, and being short 6 call contracts (of the type described above). Calculate the expected return and standard deviation of the return for this portfolio over the time interval $[0,2]$.

