CMPSC 360 - Additional Questions for Homework on Section 5.3.
A. Consider the set of bit strings S defined as follows

- The empty string λ is in S
- If $t \in S$ then $01 t \in S$ and $0 t 1 \in S$
(a) Construct all the bit strings that would be formed by applying the recursive step at most three times.
(b) Prove that every bit string in S has an equal number of 0 's and 1's.
B. Consider the set of strings P (using characters "(" and ")") defined as follows
- The empty string λ is in P
- If $q, r \in P$ then the concatenation $q r \in P$
- If $q \in P$ then $(q) \in P$
[Note: Treat the left parenthesis "(" and right parenthesis ")" simply as characters in a string.]
(a) Construct all the strings that would be formed by applying recursive steps at most three times.
(b) Prove that every string in P has an equal number of left parentheses and right parentheses.
C. Consider the set of integers T defined as follows
- $1 \in T$
- If $n \in T$ then $n-4 \in T$
- If $n \in T$ then $2 n+1 \in T$
(a) Construct all the integers that would be formed by applying recursive steps at most three times.
(b) Prove that every integer in T is odd.
D. Consider the set of strings U (using characters from the set $\{\mathrm{A}, \mathrm{B}\}$) defined as follows
- $\mathrm{A} \in U$
- If $t \in U$ then $\mathrm{AB} t \in U$
(a) Construct all the strings that would be formed by applying recursive steps at most four times.
(b) Prove that every string in U ends with the character A.
(c) Prove that for every string in U the total number of A's present is greater than the total number of B's present.
E. Consider the definition of full binary trees defined as follows
- The single vertex r (designated as a root) is a full binary tree.
- If T_{1} and T_{2} are full binary trees, then there is a full binary tree $T_{1} \cdot T_{2}$ consisting of a root r together with edges connecting to T_{1} (as its left subtree) and T_{2} (as its right subtree).

Prove for any full binary tree T that the number of vertices that are left children equals the number of vertices that are right children.

