Additional Questions for Homework on Section 5.4 and Section 7.1.

A. Consider the sine integral function Si(x) defined by

$$\operatorname{Si}(x) = \int_0^x \frac{\sin t}{t} \, dt.$$

Calculate the following derivatives.

(ii) $\frac{d}{dx}(x^2\operatorname{Si}(x))$ (iii) $\frac{d}{dx}(\operatorname{Si}(x))^3$ (iv) $\frac{d}{dx}\operatorname{Si}(1/x)$ (i) $\frac{d}{dx}$ Si(3x)

B. Consider the error function $\operatorname{erf}(x)$ that is defined by

$$\operatorname{erf}(x) = \int_0^x e^{-t^2} \, dt$$

Calculate the following derivatives. (i) $\frac{d}{dx} \operatorname{erf}(x/2)$ (ii) $\frac{d}{dx}(x \operatorname{erf}(x))$ (iii) $\frac{d}{dx}(4 \operatorname{erf}(x) + 2)$

C. Consider the Fresnel S function S(x) that is defined by

$$S(x) = \int_0^x \sin\left(\frac{\pi}{2}t^2\right) dt.$$

Calculate the following derivatives (also use the function definitions from the previous two problems).

(i) $\frac{d}{dx}S(x)$ (ii) $\frac{d}{dx}(S(x)\operatorname{erf}(x))$ (iii) $\frac{d}{dx}\frac{\operatorname{Si}(x)}{S(x)}$

D. Based on the integral construction of the natural logarithm,

(a) draw the region whose area corresponds to $\ln 1.5$.

(b) Based on your answer to (a) explain why one can graphically conclude that $1/3 \le \ln 1.5 \le 1/2$.

(c) In fact one can do even better. See if you can explain why $1/3 \le \ln 1.5 \le 5/12$. (Hint: Think trapezoids.)

(d) Draw the region whose area corresponds to ln 3.

(e) Based on your answer to (a), explain graphically why $\ln 3 \leq 2$.

(f) Determine a better upper bound for ln 3 using graphical means and support your answer.