Additional Questions for Homework on Section 5.4 and Section 7.1.
A. Consider the sine intergral function $\operatorname{Si}(x)$ defined by

$$
\operatorname{Si}(x)=\int_{0}^{x} \frac{\sin t}{t} d t
$$

Calculate the following derivatives.
(i) $\frac{d}{d x} \operatorname{Si}(3 x)$
(ii) $\frac{d}{d x}\left(x^{2} \operatorname{Si}(x)\right)$
(iii) $\frac{d}{d x}(\operatorname{Si}(x))^{3}$
(iv) $\frac{d}{d x} \operatorname{Si}(1 / x)$
B. Consider the error function $\operatorname{erf}(x)$ that is defined by

$$
\operatorname{erf}(x)=\int_{0}^{x} e^{-t^{2}} d t
$$

Calculate the following derivatives.
(i) $\frac{d}{d x} \operatorname{erf}(x / 2)$
(ii) $\frac{d}{d x}(x \operatorname{erf}(x))$
(iii) $\frac{d}{d x}(4 \operatorname{erf}(x)+2)$
C. Consider the Fresnel S function $S(x)$ that is defined by

$$
S(x)=\int_{0}^{x} \sin \left(\frac{\pi}{2} t^{2}\right) d t
$$

Calculate the following derivatives (also use the function definitions from the previous two problems).
(i) $\frac{d}{d x} S(x)$
(ii) $\frac{d}{d x}(S(x) \operatorname{erf}(x))$
(iii) $\frac{d}{d x} \frac{\operatorname{Si}(x)}{S(x)}$
D. Based on the integral construction of the natural logarithm,
(a) draw the region whose area corresponds to $\ln 1.5$.
(b) Based on your answer to (a) explain why one can graphically conclude that $1 / 3 \leq \ln 1.5 \leq 1 / 2$.
(c) In fact one can do even better. See if you can explain why $1 / 3 \leq \ln 1.5 \leq 5 / 12$. (Hint: Think trapezoids.)
(d) Draw the region whose area corresponds to $\ln 3$.
(e) Based on your answer to (a), explain graphically why $\ln 3 \leq 2$.
(f) Determine a better upper bound for $\ln 3$ using graphical means and support your answer.

