Evolution of Software Development Process Models

Penn State Harrisburg
COMP413W
Fall 2007

Part of this material taken from Steven Schach: Object-Oriented and Classical Software Engineering 7/e

Introduction

• Review of lifecycle approaches
• Move toward iterative models
• Agile methods
• Software process improvement
Rapid Prototyping Model

- Rapid prototype
- Analysis
- Design
- Implementation
- Postdelivery maintenance

- Development
- Maintenance

Code and Fix Model

- Implement the first version
- Modify until client is satisfied
- Postdelivery maintenance

- Development
- Maintenance
- Retirement
Boehm's Spiral Model

Waterfall Model

Traditional SDLC
Waterfall Model

- We often iterate between phases during development.

We typically do not plan for the reverse arrows.

And they happen—whether we plan for them or not.

Waterfall Model

- We find ourselves in big trouble with arcs like this.

This project is probably out of control.
Waterfall Model

- The bigger the arc, the bigger the trouble.

Waterfall Model

- Instead of fighting the inevitable changes, why not embrace them, and plan for them?

This project is manageable, and we still have flexibility.

Now, how do we get done?
Many Waterfall Models

- When we stack a bunch of these side-by-side, we can state our expectations for each cycle.

![Waterfall Model Diagram]

Many Waterfall Models

- The vertical columns are phases that encompass a predetermined number of cycles (increments).
Many Waterfall Models

- The end of each phase represents a milestone. Each milestone has its distinct set of deliverables.

Unified Process

- This idea is the basis for the Unified
Unified Process

- UP is a four-phased approach
 - Inception phase
 - Elaboration phase
 - Construction phase
 - Transition phase
- There can be any number of iterations (increments) within each phase.

During each phase, various workflow activities take place at varying degrees depending on the particular phase that is underway.
Unified Process

• The **requirements** workflow aims to determine the client’s needs
• The **analysis** workflow aims to analyze and refine the requirements
• The **design** workflow aims to refine the analysis workflow until the material is in a form that can be implemented by the programmers
 – **Architectural design:** Decompose the product into modules
 – **Detailed design:** Design each module (algorithms)
• The **implementation** workflow aims to deploy operational software in the chosen environment.

Unified Process

The Inception Phase begins the process

(c) Julia M. Lobur

(c) Julia M. Lobur
Unified Process

• The aim of the Inception Phase is to determine whether the proposed software product is economically viable and to some extent, technologically feasible. You need to:
 – Gain an understanding of the domain
 – Build the business model
 – Delimit the scope of the proposed project
 • Focus on the subset of the business model that is covered by the proposed software product
 – Begin to make the initial business case

Unified Process

• Questions that need to be answered include:
 – Is the proposed software product cost effective?
 – How long will it take to obtain a return on investment?
 • Alternatively, what will be the cost if the company decides not to develop the proposed software product?
 – If the software product is to be sold in the marketplace, have the necessary marketing studies been performed?
 – Can the proposed software product be delivered in time?
 – What will be the impact if the proposed software product is delivered late?
Unified Process

- The deliverables of the Inception Phase include:
 - The initial version of the business domain model
 - The initial version of the requirements artifacts
 - A preliminary version of the analysis artifacts
 - A preliminary version of the architecture
 - The initial list of risks
 - The initial ordering of the use cases (Chapter 10)
 - The plan for the elaboration phase
 - The initial version of the business case

Unified Process

- There is insufficient information at the beginning of the Inception Phase to plan the entire development
- The only planning that is done at the start of the project is the planning for the Inception Phase itself
- For the same reason, the only planning that can be done at the end of the Inception Phase is the plan for just the next phase, the Elaboration Phase
The Elaboration Phase follows the Inception Phase

The aim of the Elaboration Phase is to refine the initial requirements. You need to:

- Refine the architecture
- Monitor the risks and refine their priorities
- Refine the business case
- Produce the project management plan

The major activities of the elaboration phase are refinements or elaborations of the previous phase.
• The tasks of the Elaboration Phase correspond to:
 – Completing the requirements workflow, to the extent possible
 – Performing the entire analysis workflow, to the extent possible
 – Starting the design of the architecture

• The deliverables of the Elaboration Phase include:
 – The completed domain model
 – The completed business model
 – The completed requirements artifacts
 – The completed analysis artifacts
 – An updated version of the architecture
 – An updated list of risks
 – The project management plan (for the rest of the project)
 – The completed business case
The aim of the Construction Phase is to produce the first operational-quality version of the software product
 – This is sometimes called the beta release

The emphasis in this phase is on Implementation and Testing
 – Unit testing of modules
 – Integration testing of subsystems
 – Product testing of the overall system
Unified Process

- The deliverables of the Construction Phase include:
 - The initial user manual and other manuals, as appropriate
 - All the artifacts (beta release versions)
 - The completed architecture
 - The updated risk list
 - The project management plan (for the remainder of the project)
 - Deployment plan
 - Training plan
 - If necessary, the updated business case

Unified Process

The Transition Phase follows the Construction Phase
Unified Process

• The aim of the transition phase is to ensure that the client’s requirements have indeed been met
 – Faults in the software product are corrected

• The deliverables of the transition phase include:
 – All the artifacts (final versions)
 – The completed manuals
 – Training

RUP

• This UP was extended by Rational in the Rational Unified Process.
RUP

- RUP is much more involved than UP, and is proprietary.

Enterprise Unified Process

- The extension of RUP, the Enterprise Unified Process (EUP) accounts for the entire asset lifecycle to include project management.
Agile Methods

• Agile processes are a collection of new paradigms characterized by:
 – Less emphasis on analysis and design
 – Earlier implementation (working software is considered more important than documentation)
 – Responsiveness to change
 – Close collaboration with the client

• Invented by seventeen software developers (later dubbed the "Agile Alliance") at a Utah ski resort over two days in February 2001 and produced the Manifesto for Agile Software Development
 – The Agile Alliance did not prescribe a specific life-cycle model
 – Instead, they laid out a group of underlying principles
Agile Methods

• A principle in the *Agile Manifesto* is to deliver working software frequently
 – Ideally every 2 or 3 weeks
• One way of achieving this is to use timeboxing
 – Used for many years as a time-management technique
 – A specific amount of time is set aside for a task
 – Typically 3 weeks for each iteration
 – The team members then do the best job they can during that time

Agile Methods

• Agile processes have had some successes with small-scale software development
 – However, medium- and large-scale software development is very different
• The key decider: the impact of agile processes on postdelivery maintenance
 – Refactoring is an essential component of agile processes
 – Refactoring continues during maintenance
 – Will refactoring increase the cost of post-delivery maintenance, as indicated by preliminary research?
Agile Methods

• Instantiations include:
 – XP - Extreme Programming
 – SCRUM – XP + project management
• Agile processes are certainly good when requirements are vague or changing
• Not so good when high reliability and safety are involved.
• It is too soon to evaluate agile processes
 – There are not enough data yet

Software Process Improvement

"The fundamental problem with software development is that the software process is badly managed."

CHAOS reports from 1994 to 2004
Software Process Improvement

• Improving the software process leads to
 – Improved software quality
 – Delivery on time, within budget
• Improved management leads to
 – Improved techniques
• Software process improvement initiatives include:
 – Capability maturity model (CMM) / CMMI
 – ISO 9000-series
 – ISO/IEC 15504

Software Process Improvement

• The CMM is a product of the Software Engineering Institute (SEI) at Carnegie-Mellon University.
• The SEI was established by the Department of Defense in 1984.
• It is a set of strategies for improving the software process
 – SW–CMM for software
 – P–CMM for human resources (“people”)
 – SE–CMM for systems engineering
 – IPD–CMM for integrated product development
 – SA–CMM for software acquisition
• These strategies are unified into CMMI (capability maturity model integration)
Software Process Improvement

- The SEI rates the effectiveness of organizations software development processes through a set of 5 "maturity" levels.
- The levels are determined by the mastery of "key process areas." (See Figure 3.3 on Page 94.)
- The maturity levels as defined by the CMMI are:
 1 = Initial
 2 = Repeatable
 3 = Defined
 4 = Managed
 5 = Optimized
- A higher number indicates better control over development processes.

Software Process Improvement

- Self-assessments are encouraged, but the "official" rating is done by an SEI-certified auditor.
- Moving from one level to the next can take 18 months to 3 years, but breaking free of Level 1 can take 5 years or more.
- **Important**: The purpose of the CMM/CMMI is process improvement-- not the assignment of a "grade" to a process.
- Unfortunately, it is being used that way, which invites abuse and unethical behavior.
Software Process Improvement

• Other CMMI drawbacks
 – Invites "heavyweight" processes that are unsuitable for some development shops.
 – Too focused on process management and not focused enough on product development
 – Militates against innovative approaches such as agile processes.
 – You have to meet 100% of the criteria at a certain maturity level to be certified at that level.
 • e.g., you can meet 20% of Level 5, 70% of Level 4, 80% of Level 3, 90% of Level 2, and you would still be at maturity Level 1.

CMMI is an effective tool when used properly.

ISO 9000

• A set of five standards for industrial activities
 • ISO 9001 for quality systems
 • ISO 9000-3, guidelines to apply ISO 9001 to software
• Some overlap with CMM, but they are not identical
 – Not process improvement
• Stresses documenting the process
• Emphasizes measurement and metrics
 – ISO 9000 is required to do business with the EU
 – Also required by many U.S. businesses, including GE
 – More and more U.S. businesses are ISO 9000 certified
ISO/IEC 15504

- Original name: Software Process Improvement Capability Determination (SPICE)
- International process improvement initiative
- Started by the British Ministry of Defence (MOD)
- Includes process improvement, software procurement
- Extends and improves CMM, ISO 9000
- A framework, not a method
- CMM, ISO 9000 conform to this framework
- Now referred to as ISO/IEC 15504 or just 15504

Process Improvement Payback

- Hughes Aircraft (Fullerton, CA) spent $500K (1987-90)
 - Savings: $2M per year, moving from level 2 to level 3
- Raytheon moved from level 1 in 1988 to level 3 in 1993
 - Productivity doubled
 - Return of $7.70 per dollar invested in process improvement
- Tata Consultancy Services (India) used ISO 9000 and CMM (1996-90)
 - Errors in estimation decreased from 50% to 15%
 - Effectiveness of reviews increased from 40% to 80%
Conclusion

• No one-size-fits-all process
• Iterative methods control risk
• Process improvement provides manageability and high quality
• Process improvement usually pays for itself